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We consider the countercurrent flow of two incompressible immiscible viscous fluids
in an inclined channel. This configuration may lead to the phenomena of ‘flooding’,
i.e. the transition from a countercurrent regime to a cocurrent regime. This transition
is marked by a variety of transient behaviour, such as the development of large-
amplitude waves that impede the flow of one of the fluids to the reversal of the flow
of the denser fluid. From a lubrication approximation based on the ratio of the channel
height to the downstream disturbance wavelength, we derive a nonlinear system of
evolution equations that govern the interfacial shape separating the two fluids and
the leading-order pressure. This system, which assumes fluids with disparate density
and dynamic viscosity ratios, includes the effects of viscosity stratification, inertia,
shear and capillarity. Since the experimental constraints for this effective system are
unclear, we consider two ways to drive the flow: either by fixing the volumetric flow
rate of the gas phase or by fixing the total pressure drop over a downstream length of
the channel. The latter forcing results in a single evolution equation whose dynamics
depends non-locally on the interfacial shape. From both of these driven systems,
admissible criteria for Lax shocks, undercompressive shocks and rarefaction waves
are investigated. These criteria, through a numerical verification, do not depend signifi-
cantly on the inertial effects within the more dense layer. The choice of the local/non-
local constraints appears to play a role in the transient growth of undercompressive
shocks, and may relate to the phenomena observed near the onset of flooding.

1. Introduction
Liquid films are encountered in many physical situations. Examples of their prac-

tical application include condensate flow in gas wells (Duenckel 2002), oil and gas
flow through sub-sea tiebacks (Moritis 2001), or in the on-chip cooling of micro-
electromechanical (MEMS) devices (Pettigrew et al. 2001). Two-phase gas–liquid flows
are also important in a number of space operations including the design and operation
of spacecraft environmental systems, storage and transfer of cryogenic fluids and
safety and performance issues related to space nuclear power systems (Dukler et al.
1988; Bousman, McQuillen & Witte 1996). In this work, we consider the separated
two-phase gas–liquid scenario shown in figure 1. A liquid layer is driven down along
the left-hand wall by gravity, while an adverse pressure gradient moves the gas in
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Figure 1. Outline of the problem of interest. The plate on the left-hand side is coated by
a liquid driven by gravity (pointing down), while the gas is driven by an adverse pressure
drop (higher pressure at the liquid exit). This system, even in isothermal conditions, can
undergo hydrodynamic instabilities for sufficiently large adverse pressure drops. In this work,
we consider only the domain in the dashed box, and we do not consider the entrance or exit
effects in the liquid or the gas. The local coordinate frame, based on the channel, is also shown.

the opposite direction. In applications, the transfer of heat is from the liquid-coated
surface into the liquid. The heat is then carried by the liquid down the plate, and is
conducted through the liquid into the gas. The gas then carries the heat away through
advection from the application to the environment. Hence, heat-transfer rates are
improved as the gas flow rate increases.

Even in isothermal situations, the increase of the adverse pressure drop results in
hydrodynamic instabilities. The two fluids can flow either cocurrently (both fluids flow
in the same direction) or countercurrently (fluids flow in opposite directions). The
transition from the countercurrent flow shown in figure 1 to a cocurrent flow adverse
to gravity as the adverse pressure drop is increased is called flooding. Two examples
of phenomena which are considered as flooding are: (i) large interfacial deformations
of the liquid that prevents the flow of gas, and (ii) transition during which the
liquid flow rate is reduced or inverted. Flooding has been investigated extensively
both phenomenologically (Chang 1986; Fowler & Lisseter 1992) and experimentally
(see Bankoff & Lee (1986) and the references therein), but the criteria for onset of
flooding are still an open question. It is known, however, that during the transition
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from countercurrent to cocurrent upstream flow, a whole range of waves is observed,
from possibly chaotic small-amplitude ones to large-amplitude waves that impede
the flow of the gas. Countercurrent flow returns only after the pressure gradient is
decreased below the flooding point. One of our goals in this paper is to discuss
possible connections between the complicated interfacial dynamics and the onset of
flooding. There are several physical mechanisms that play a role in this description,
and a brief outline of these mechanisms follows.

If the gas layer is considered passive, then the dynamics of the interface is driven
purely by gravitational, inertial and capillary forces. The long-wave linear stability
theory for single thin liquid films was developed by Benjamin (1957). At small angles
of inclination, Floryan, Davis & Kelly (1987) studied a falling single-phase film and
found that the growth rates of a disturbance could be reduced by increasing the surface
tension or decreasing the angle of inclination. They also reported that the critical
Reynolds number (Re) of the shear mode varied non-monotonically with either the
inclined angle or surface tension parameter. Smith (1990) used the model of a thin
liquid film with deformable top (right-hand wall in figure 1) surface flowing down a
rigid inclined plane to discuss the mechanisms for instability: initiating mechanism
(shear and/or velocity induced) that drives the dominant motion in a perturbed film,
and growth mechanism (due to inertial stress) that produces the unstable motion of
the interface. Joo, Davis & Bankoff (1991) found that waves can steepen and increase
in height to a range where the long-wave assumptions cease to be valid. When the
disturbance wavenumber is sufficiently small, a numerical solution of the evolution
equation shows that the wave grows initially at the exponential rate of linear theory,
but later grows super-exponentially. Peaks grow much faster than troughs deepen, and
the front of the peak steepens toward the vertical, showing the incipient breaking, and
the second trough grows behind the peak. Chang (1986) used a phenomenological
model to investigate the interfacial behaviour of two-phase flow under the assumption
of a passive upper phase and allowed turbulent shear stress on the interface.

For the case of two-layer flow, the initiating mechanism for the long-wave instability
is richer than that for the single layer (due to viscosity and/or density stratification).
Linear stability of two superposed layers of fluids was first studied by Yih (1967)
for the plane Couette–Poiseuille flow in a horizontal channel. Using a long-wave
assumption, he showed that the interface was susceptible to instability owing to the
viscosity stratification. A summary of the mathematical theory for two-layer flows
and core–annular flows can be found in Joseph & Renardy (1992). Core–annular
flows are found in vertical tubes in which one fluid forms the ‘core’, centred on the
tube axis, while the other fluid form an annulus between the core and the tube wall.
Two-phase cocurrent (both phases flow in the same direction) core–annular flow of
air and water was extensively studied by Kouris & Tsamopoulos (2002) in a host
of geometries ranging from model arrangements to single vertical constricted tubes.
The ratio of viscosity of the fluid in the annulus to that in the core of the tube, µ, is
greater than or equal to one. They found that the difference in viscosity of the two
fluids induces an interfacial velocity, which is directly responsible for the transition
from chaotic interactions obtained for viscosity ratio close to one, to well-organized
wavetrains obtained for large values of µ. The viscosity ratio does not, however,
affect the long-time behaviour of the wave shape and wave amplitude. The increase
in the effect of surface tension causes a proportional increase in the amplitude of the
resulting wave in addition to the fact that it reduces the wave speed drastically. For
larger values of µ, the initial condition does not determine whether the interfacial
shapes are chaotic or organized in space and time.
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Tilley, Davis & Bankoff (1994a) investigated the influence of the channel thickness
and the mean interfacial height on the stability of two-layer superposed fluid flow,
and identified the mechanisms for linear stability in the long-wave limit where the flow
rate of each layer is prescribed. Gravity-driven flow of two incompressible immiscible
viscous fluids on a periodic spatial domain was studied numerically as a fully nonlinear
free-boundary problem by Zhang et al. (2002). It was found that wave crests were
formed as unstable waves flowing downstream. It was observed that increasing the vis-
cosity of the upper fluid, and decreasing the angle of inclination made the flow more
stable. Their conclusion is similar to the results in Floryan et al. (1987). The attempt
to classify the instabilities in parallel two-phase flow is made in Boomkamp &
Miesen (1996). The criteria for dividing the mechanisms of instabilities into classes
is based on how the energy is being transferred from the primary to the disturbed
flow. These mechanisms find their origin in one of the following properties of the flow
system: density stratification and orientation (Rayleigh–Taylor and instability induced
by tangential disturbances, i.e. viscosity and/or gravity instabilities), velocity profile
curvature (Miles instability), viscosity stratification, shear effects or a combination of
the last two effects.

All models discussed above were investigated under the assumption of constant
flow-rate constraints. An alternative constraint is to fix the pressure drop over the
length of the channel. An additional motivation for considering this constraint is that
in experiments and applications it is very difficult to maintain a constant flow rate,
especially when the upper fluid is a gas. Thus, in this paper we consider two-fluid
systems in both regimes and discuss the differences.

Finally, we consider a system in which an interfacial shear stress acts in the direc-
tion opposite to gravity. A single-phase falling liquid film on an inclined substrate
can be driven up the plate by, for example, Marangoni-induced shear stresses induced
by an appropriate temperature gradient. These films are considered for applications
involving selective wetting in a lab-on-a-chip set-up (see Kataoka & Troian 1999;
Stone, Stroock & Ajdari 2004). Until recently, it was believed that for such systems
only compressive shocks (in which characteristics enter the shock from each side)
occur. However, recently, it has been discovered that the interfacial dynamics of
these films includes the development of undercompressive shocks. There is also a
growing amount of theoretical work indicating that undercompressive shocks are
observed in other physical systems. Kluwick, Cox & Scheichl (2000) find these waves
in a modified Korteweg–de Vries–Burgers equation which describes the evolution of
weakly nonlinear concentration waves in suspensions of particles in fluids. Mathema-
tically, the advancing front of a driven film is an important example of shock
formation in a system described by a scalar conservation law.

The first indication of this more complicated interfacial dynamics comes from the
comparison of two series of experiments. The first experimental investigation of this
particular thin-film behaviour was done by Ludviksson & Lightfoot (1971). Using
squalane oil spreading on a silver substrate, with surface stresses of the order of
0.2 dyn cm−2 or less, produces stable spreading films with a straight-edged moving
front. Using interferometry, they reconstruct the film thickness profiles and show that
the film shape decreases monotonically toward the substrate with no evidence of a
capillary rim at the advancing front. In contrast, Carles & Cazabat (1993) report a
well-formed fingering instability at the leading edge of a climbing film which develops
within minutes of applying a vertical temperature gradient. In these experiments, a
silicone oil film, subject to stresses of approximately 0.5 dyn cm−2 and higher, is made
to coat a silicon wafer. This ‘contradiction’ between the results of Ludviksson &
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Lightfoot (1971) and Carles & Cazabat (1993) inspired a number of new analytical
and experimental studies (Bertozzi et al. 1998; Bertozzi, Münch & Shearer 1999).
Bertozzi et al. (1998) observe experimentally the formation of a very large capillary
ridge. The ridge continues to broaden as it advances up the plate. Despite the large
capillary ridge, the contact line remains stable. Bertozzi et al. (1998) emphasize that
undercompressive shock plays a key role in preventing the contact line from fingering
(i.e. breaking up into rivulets). Schneemilch & Cazabat (2000a) show experimentally
that this undercompressive shock (for which characteristics enter the shock on one side
and leave on the other) for infinite films and substrates can be applied to real systems
of finite dimensions. These experiments stimulate new theory for these problems result-
ing in discovery of reverse undercompressive shock (Münch 2003; Sur, Bertozzi &
Behringer 2003). The reverse undercompressive shock forms the trailing edge of a
double shock wave in a thin liquid film that moves up the wafer. The velocity of the
wave and the thickness of the enclosed film can be varied by changing the temperature
gradient or the inclination angle, and the total amount of fluid can be changed by
modifying the initial conditions. This shock is reversed because it involves a thicker
film advancing upward from a thinner film, which is the reverse of the type found by
Schneemilch & Cazabat (2000b).

In this paper, we discuss analytically and numerically the dynamics of the interface
in a two-fluid system, and find the formation of the waves that, for the constant gas
flow-rate case, are similar to those found in the one-fluid flow discussed above. This
similarity is used to classify the dynamics found in the constant pressure-drop case,
where travelling-wave solutions are typically not found.

The structure of this paper is as follows. In § 2, we formulate the problem, discuss the
assumptions that we use, and derive the highly nonlinear evolution equation. Section 3
describes the numerical method. In § 4, necessary, but not sufficient conditions for the
existence of weak travelling-wave solutions are investigated. We find the regions of
their existence for constant gas volumetric flow rate, and the four cases of solutions
found in Bertozzi et al. (1999) are present in our problem as well. In § 5, we verify
numerically our analytical results and find that the structure of the interfacial profile
for given system parameters (ratio of densities, dynamical viscosities, etc.) for the
constant gas volumetric flow-rate case, involves the Lax (classical) shock, double shock
(Lax and undercompressive) and combination of rarefaction wave with undercompres-
sive shock. For an applied fixed pressure drop across the channel, we find that the
maximum height of these dynamics grow in time. Inertial effects are also discussed.
We draw conclusions in § 6.

2. Formulation and governing equations
Consider the flow of two viscous incompressible fluids in a channel of height d

and length L (figure 1), where n is the unit normal pointing from phase 1 into phase
2, and t is the unit tangent vector at the interface. The equations that govern this
system are continuity and Navier–Stokes (asterisks denote dimensional variables):

∇̄ · u∗(i)

= 0,

ρ∗
i

(
∂u∗(i)

∂t∗ + u∗(i) · ∇̄u∗(i)

)
= −∇̄p∗(i) + ρ∗

i g + µ∗
i ∇̄2u∗(i)

.

The superscript (i) on the dependent variables correspond to i = 2 – upper fluid and
i = 1 – lower fluid, respectively, with corresponding densities ρ∗

i , dynamic viscosities µ∗
i
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and pressures p∗(i). The velocities u∗(i)

= (u∗(i)
, w∗(i)) satisfy these boundary conditions

on the channel walls: u∗(1)

= 0 at z∗ =0 and u∗(2)

= 0 at z∗ = d , as well as the balance
of normal stress, balance of tangential stress, continuity of normal and tangential
components of velocity and kinematic condition at z∗ = h∗(x∗, t∗):

[n · T∗ · n] = σ ∗κ∗, (2.1)

[t · T∗ · n] = 0, (2.2)

[u∗ · n] = 0, (2.3)

[u∗ · t] = 0, (2.4)

h∗
t∗ + u∗h∗

x∗ − w∗ = 0, (2.5)

where the jump [f ] of the quantity f across the interface is denoted by [f ] = f (2) −
f (1). T∗ denotes the stress tensor, σ ∗ is the surface tension between the two fluids, and
κ∗ is twice the mean curvature of the interface, given by

κ∗ = −h∗
x∗x∗

(
1 + h∗2

x∗

)−3/2
.

We scale lengths by d , time by ν∗
1/dg, densities by ρ∗

1 and velocities by d2g/ν∗
1 , where

ν∗
1 is the kinematic viscosity of the lower fluid. That determines the pressure scale as

ρ∗
1dg. Thus, we obtain

∇ · u(i) = 0, (2.6)

Rel

ρ∗
i

ρ∗
1

[
∂u(i)

∂t
+ u(i) · ∇u(i)

]
= −∇p(i) +

ρ∗
i

ρ∗
1

ĝ +
µ∗

i

µ∗
1

∇2u(i), (2.7)

where Rel = gd3/ν∗2
1 is the Reynolds number of the lower fluid, ĝ is the unit vector

in the direction of gravity and velocities are u(i) = (u(i), w(i)).
The boundary conditions on the channel walls become: u(1) = 0 on z = 0 and u(2) = 0

on z = 1. The conditions (2.1)–(2.5) at z = h(x, t) become

[n · T · n] = σκ, (2.8)

[t · T · n] = 0, (2.9)

[u · n] = 0, (2.10)

[u · t] = 0, (2.11)

ht + uhx − w = 0. (2.12)

where

σ =
σ ∗

ρ1d2g
.

We are interested in gas–liquid systems where the density and dynamic viscosity
ratios are small. Following the case of air–water (under standard conditions: ρ∗

2/ρ
∗
1 =

8 × 10−4, µ∗
2/µ

∗
1 = 2 × 10−2), we assume that ρ̄ = ρ∗

2/ρ
∗
1 is of order ε2 and µ̄ = µ∗

2/µ
∗
1 is

of order ε, where ε is an aspect ratio of channel thickness to a characteristic channel
length, i.e. ρ̄ = ε2ρ, µ̄ = εµ, and ρ, µ are O(1). This distinguished limit allows us to
capture the dominant physical effects in this system, while simplifying the analysis
considerably, as we will see below. For an air–water system, this scaling is consistent
with experiments performed in the channels several hundred microns wide (see, e.g.
Pettigrew et al. 2001).

In terms of the Reynolds numbers for the liquid and the gas, if Ul is the characteristic
velocity of the liquid, and Ug is the characteristic velocity of the gas, then the ratio
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of the liquid Reynolds number to the gas Reynolds number is given by

Rel

Reg

=
dUl/ν

∗
1

dUg/ν
∗
2

=
ν∗

2

ν∗
1

Ul

Ug

=
1

ε

Ul

Ug

.

Therefore, the characteristic gas velocity scale is O(Ul/ε) since we consider that
Reg = Rel = O(1).

Next, we assume that changes of the flow occur on a spatial scale that is much
longer than the channel thickness. Therefore, we use scaled variables ξ = εx and ζ = z.
The kinematic boundary condition (2.12) then requires rescaling of time as τ = εt .

Assume a regular perturbation expansion for u in ε:

u(1)(ξ, ζ, τ ) = u
(1)
0 (ξ, ζ, τ ) + εu

(1)
1 (ξ, ζ, τ ) + · · · .

and then from the continuity equation (2.6), it follows that

w(1)(ξ, ζ, τ ) = ε
{
w

(1)
0 (ξ, ζ, τ ) + εw

(1)
1 (ξ, ζ, τ ) + · · ·

}
.

For the gas, the asymptotic expansion for the tangential velocity is

u(2)(ξ, ζ, τ ) =
1

ε

{
u

(2)
0 (ξ, ζ, τ ) + εu

(2)
1 (ξ, ζ, τ ) + · · ·

}
.

From the continuity equation (2.6):

w(2)(ξ, ζ, τ ) = w
(2)
0 (ξ, ζ, τ ) + εw

(2)
1 (ξ, ζ, τ ) + · · · .

Since the system is driven by a pressure gradient and possibly gravity, we expect
from balancing terms in (2.7) that the downstream pressure gradients will be of unit
order:

p(i)(ξ, ζ, τ ) =
1

ε

{
p

(i)
0 (ξ, ζ, τ ) + εp

(i)
1 (ξ, ζ, τ ) + · · ·

}
(i = 1, 2). (2.13)

Based on the experimental configurations involving micrometric channels, (see, e.g.
Pettigrew et al. 2001), we let the capillary forces be large compared to hydrostatic
forces; therefore, we define the unit-order parameter S = ε2σ.

Next, we proceed to asymptotically expand the governing equations in orders of
ε. Note that a similar expansion was performed by Tilley, Davis & Bankoff (1994b)
without our particular scaling of viscosities and densities. Therefore, their formulation
is applicable to a wider range of fluid combinations than that derived here, but also
significantly more involved algebraically.

We obtain from (2.6)–(2.12) a sequence of linear problems:

O(ε−1): p
(i)
0ζ = 0, (2.14)

p
(1)
0 = p

(2)
0 (ζ = h(ξ, τ )), (2.15)

u
(2)
0 = 0 (ζ = h(ξ, τ )), (2.16)

O(1): − p
(2)
0ξ + µu

(2)
0ζ ζ = 0, (2.17)

−p
(1)
0ξ + sin β + u

(1)
0ζ ζ = 0, (2.18)

p
(1)
1ζ + cosβ = 0, (2.19)

p
(2)
1ζ = 0, (2.20)

u
(1)
0ξ + w

(1)
0ζ = 0, (2.21)
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O(1): u
(2)
0ξ + w

(2)
0ζ = 0, (2.22)

u
(2)
1 − u

(1)
0 = 0 (ζ = h(ξ, τ )), (2.23)

µu
(2)
0ζ − u

(1)
0ζ = 0 (ζ = h(ξ, τ )), (2.24)

p
(1)
1 − p

(2)
1 = −Shξξ (ζ = h(ξ, τ )), (2.25)

w
(2)
0 − hξu

(2)
0 = 0 (ζ = h(ξ, τ )), (2.26)

u
(1)
0 = 0 (ζ = 0), (2.27)

u
(2)
0 = 0 (ζ = 1), (2.28)

w
(1)
0 = 0 (ζ = 0), (2.29)

w
(2)
0 = 0 (ζ = 1). (2.30)

From equations O(ε−1) we find that

p
(1)
0 (ξ, τ ) = p

(2)
0 (ξ, τ ) = p0(ξ, τ ).

The O(1) z-momentum equations (2.19) and (2.20) with condition (2.25) on the
interface yield

p
(1)
1 (ξ, ζ, τ ) = −cosβζ + P1(ξ, τ ),

and

p
(2)
1 (ξ, τ ) = −h(ξ, τ ) cos β + P1(ξ, τ ) + Shξξ . (2.31)

We refer to P1(ξ, τ ) as the pressure correction in what follows.
The O(1) x-momentum equations (2.17), (2.18), the continuity equations (2.21),

(2.22) with boundary conditions (2.27)–(2.30), and continuity of tangential component
of the velocity and shear stress at interface (2.16), (2.24) yield

u
(1)
0 =

p0ξ − sin β

2
ζ 2 +

2h sin β − (h + 1)p0ξ

2
ζ, (2.32)

w
(1)
0 = −p0ξξ

6
ζ 3 +

{
−hξ sin β +

p0ξξ

2
(h + 1) + p0ξ

hξ

2

}
ζ 2

2
, (2.33)

u
(2)
0 =

p0ξ

2µ
(ζ − 1)2 +

p0ξ (1 − h)

2µ
(ζ − 1), (2.34)

w
(2)
0 = −p0ξξ

6µ
(ζ − 1)3 +

(p0ξ [h − 1])ξ
4µ

(ζ − 1)2. (2.35)

The details of this procedure at O(ε) are given in Appendices A and B. From this
analysis, we obtain a coupled nonlinear system of equations describing the evolution
of the interface and the pressure gradient

hτ + A1(h, p0ξ )hξ + ε[SC(h)hξξξ + A2(h, p0ξ ) + RelI (h, p0ξ ) + P (h)hξ ]ξ = 0, (2.36)

[p0ξ (1 − h)3]ξ = 0, (2.37)

where

A1(h, p0ξ ) = h2 sin β − h(h + 1)

2(1 − h)
p0ξ , (2.38)

C(h) = 1
3
h3, P (h) = − 1

3
h3 cos β,
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A2(h, p0ξ ) =
µh3p0ξ

4(1 − h)
+

µh4

4(h − 1)
sin β

+
µh2(h + 3)

(1 − h)3

[
γ − h2(h + 3)

12
sin β − h(h − 1)

4
p0ξ

]
,

I (h, p0ξ ) = Il + Ig,

with

Il =
h4(7h + 25)

240
p0ξτ

+
h5hξ

15

{
2h sin2 β +

56 + 49h − 41h2

56(h − 1)
p0ξ sin β +

(10h2 + 7h + 77)

224(h − 1)
p2

0ξ

}
, (2.39)

Ig =
ρh2(1 − h)3hξp

2
0ξ

480µ2

{
17(h + 3)

7
+ 13(1 − h)

}
, (2.40)

and

γ =

∫ ξ

0

h(h + 1)hξ̂p0ξ̂

2(1 − h)
dξ̂ + C1. (2.41)

The expression for γ (including C1) is discussed in § 4. The second term in the evolu-
tion equation corresponds to advection effects and consists of two sub-terms: the first
one describes wave propagation and steepening and the second describes the influence
of pressure gradient. The third, fourth and fifth terms in the evolution equation
describe capillary, inertia and hydrostatic effects. In the inertial term, Il corresponds
to the inertial effects within the liquid, while Ig corresponds to inertial effects of the
gas. In this work, the dynamics of interest corresponds to a weak adverse pressure
drop (Ig small).

Integrating (2.37) with respect to ξ gives

p0ξ =
Φ(τ )

(1 − h)3
.

In order to find Φ(τ ), let us introduce the gas volumetric flow rate q(τ ):

q(τ ) =

∫ 1

h

u(2) dζ .

Then after substituting (2.34), we obtain

q(τ ) = − (1 − h)3

12µ
p0ξ , Φ(τ ) = −12µq(τ ). (2.42)

At this stage, we can either require that q(τ ) is fixed, and p0ξ is found explicitly in
terms of the interfacial shape, or that the pressure drop P =p0(0) − p0(1) is fixed.
In the latter case, after integrating (2.37) we obtain

P = 12µq(τ )

∫ L

0

dξ

(1 − h)3
.

Then in terms of an imposed pressure drop, P , the equation for the pressure gradient
becomes

p0ξ = − P

(1 − h)3
∫ L

0

(dξ/(1 − h)3)

. (2.43)
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Theoretical works usually consider constant flow-rate conditions. However, the experi-
ments (see Bankoff & Lee 1986) are typically performed using constant pressure drop.
We will discuss the differences between these two scenarios further in § 5.

The asymptotic analysis proposed above breaks down if the interfacial height h

becomes too close to the upper wall. We see this when the leading-order terms in A1

and εA2 become comparable, where

1

(1 − h)3
∼ ε

(1 − h)6
,

for the constant gas volumetric flow-rate condition. Hence our theory is not applicable
for the values of interfacial height such that 1 − h ∼ ε1/3.

3. Numerical method
Before outlining the details of numerical simulation, we discuss the imposed boun-

dary conditions on the interfacial height h(ξ, τ ). Since we are not considering edge
effects at the liquid inlet or liquid exit (see figure 1), we choose boundary conditions
that we anticipate will be similar to what would be found in a physical experiment
far away from the inlet or exit. The physical problem that includes edge effects would
require a matched asymptotic expansion from the nonlinear system derived in § 2 to
the transition regimes at the liquid inlet and exit. This matched asymptotic analysis
will be addressed in future work. Here, we prescribe that at ξ = 0 (which we call the
inlet), the fluid height is equal to h−, while the height at ξ = L (which we call the exit)
is held fixed at h+.

Next, we draw attention to the details of the numerical simulation and related
issues. We use a finite-difference method with equally spaced grid points to solve the
highly nonlinear evolution equation (2.36). The time discretization is performed by a
Θ-scheme

hn+1
k − hn

k

tn
+ θf n+1

k + (1 − θ)f n
k = 0 (k = 1, . . . , N). (3.1)

where 0 � θ � 1, n stands for the time level tn and k corresponds to the grid point xk

and N to the total number of grid points. Here, θ =0 gives the forward Euler explicit
scheme, θ =1 gives the backward Euler implicit scheme, and θ = 1/2 (which we use)
yields the Crank–Nicolson scheme.

Equations (3.1) form a nonlinear algebraic system of N equations, which is solved
using iterative Newton–Kantorovich’s method (for the description of method we refer
to Diez & Kondic 2002). The idea is to linearize equations around h∗

k and obtain the
system of linear equations for the correction qk for a guess at the interfacial height h∗

k .
The obtained system of linear equations leads to a five-diagonal matrix of coefficients
which is solved using the biconjugate gradient method (Press et al. 1997). As a guess
for the solution h∗

k , we use the solution at the previous time level. If the maximum
value of the correction qk is greater than the tolerance (typically, 10−10), then we
choose a new initial guess as h∗

k + qk , k = 1, . . . , N . This procedure is iteratively
performed until the maximum value of the correction is less than the tolerance.

4. Admissible criteria for travelling-wave solutions
In this section, we derive a priori bounds for the values of h(x, t) in the system

without inertial effects in order to find necessary conditions under which travelling-
wave solutions can be found. Note that the analysis presented here does not prove that
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these solutions exists in any particular region of parameter space, but finding when
the system is compatible with weak shock travelling-wave solutions helps to classify
the results presented in § 5 in the context of related single-phase gravity-Marangoni
flow. The rigorous existence proof is deferred to future work.

Now we briefly summarize the main conclusions of the work by Bertozzi et al.
(1999), which analysed the model resulting from a gravity-Marangoni-driven single-
phase liquid-film flow

ht + (h2 − h3)x = −ε(h3hxxx)x, (4.1)

where h is the fluid thickness and ε is a small parameter.
The travelling-wave solutions connect an upstream height h− to a downstream

height h+ < h−, and steepen to shock wave solutions of (4.1) as ε → 0. If the speed s

of a resulting travelling wave satisfies λ(h+) < s < λ(h−) with λ(h) = 2h − 3h2 then the
shock is called a compressive or Lax shock. Shocks violating this condition are called
undercompressive. It is found that when h− − h+ is small, the shock is compressive.
As h− increases, there are multiple travelling waves, of which two are stable and two
are unstable. In this range of h−, the stable solutions of (4.1) are found, which are
composed of two waves travelling with different speeds. The slower wave corresponds
to a Lax shock joining h− to a height hUC >h−, where hUC is independent of h−,
while the faster wave corresponds to an undercompressive shock from hUC to h+.
Experimentally, the observed transition is due to a fundamental change in structure
of the front, from a classical capillary shock (for negligible gravity), which is linearly
unstable to perturbations, to a structure (for non-negligible gravity), that includes
an ‘undercompressive shock’. The undercompressive structure also manifests itself in
larger bumps that continue to broaden.

4.1. Flow driven by constant gas volumetric flow rate

To explore conditions under which (2.36) may support travelling-wave solutions, we
extend the domain to the entire plane and assume constant gas volumetric flow rate.
This equation then takes the form

hτ + fξ + ε
[

1
3
Sh3hξξξ − 1

3
h3hξ cos β + Rel Ī

]
ξ

= 0, (4.2)

where

f (h) = 1
3
h3 sin β + µq

6h2 − 3h + 1

(1 − h)3

+ ε

[
−12µ2qh3

(1 − h)5
− µ sin βh4(h2 + 3)

3(1 − h)3
+

µh2(h + 3)

(1 − h)3
γ

]
, (4.3)

Ī = g(h)hξ , (4.4)

with

g(h) =
h5(65h2 + 665h + 112)

140(1 − h)4
µq sin β +

3µ2q2

35

h5(5h3 + 72h2 + 392h + 245)

(1 − h)8

+
6ρq2

35

h2(27h − 10)

(1 − h)3
+

2

15
h6 sin2 β, (4.5)

γ =
h3

−
3

sin β +
µqh2

−(3 + h−)

(1 − h−)3
− h2(h + 3)

12
sin β − µq

h3 − 3h2 + 6h

(1 − h)3
, (4.6)

where γ is found from the condition that the correction to leading-order gas volu-
metric flow rate vanishes. Note that the capillary shock profile is a travelling-wave
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solution h(ξ − st) of the PDE (4.2) where s is the shock speed and satisfies the
Rankine–Hugoniot condition

s =
f (h−) − f (h+)

h− − h+

.

We derive bounds on the admissible far-field states (h±) for such a solution, if it
exists. A travelling wave h(ξ − st) connecting the state h− to the state h+ satisfies

−shξ + fξ = −α(h3hξξξ )ξ + θ(h3hξ )ξ − εRel Ī ξ , (4.7)

where

α = 1
3
εS,

θ = 1
3
ε cos β.

We integrate (4.7) once to obtain

−sh + f = −αh3hξξξ + θh3hξ − εRel Ī + K, (4.8)

where

K = −sh+ + f (h+).

To proceed, we note that any scalar conservation law of the form

ht + (f (h))x = 0 (4.9)

can be rewritten as (see also Bertozzi et al. 1999)

Ḡ(h)t + F (h)x = 0,

where Ḡ, F are called an entropy-entropy flux pair: Ḡ is convex and F is related to
Ḡ by compatibility with the conservation law (4.9)

F ′(h) = Ḡ′(h)f ′(h). (4.10)

Let us apply the entropy–entropy flux pair concept to (4.2), in order to find
compatibility conditions for travelling-wave solutions that connect the left-hand state
h− to the right-hand state h+ <h−. Assume that h+ > 0. If we have a travelling-wave
solution, h(ξ − st), it must satisfy (4.7). Now we consider a function of h, Ḡ(h), that
satisfies Ḡ′′(h) > 0 on some range of h. Multiplying (4.7) by Ḡ′(h), and integrating by
parts from −∞ to ∞ gives

−s[Ḡ(h)] + [F ] =

∫
Ḡ′r(h) dx, (4.11)

where

r(h) = ε
[
− 1

3
S{h3hxxx}x + 1

3
cos β{h3hx}x − RelIx

]
.

The first term in integral (4.11)∫
− 1

3
εS{h3hxxx}xḠ

′ dx = 1
3
εS

∫
h3hxxxhxḠ

′′ dx

is non-positive for Ḡ′′(h) = hp−3 provided that p satisfies the inequality −1/2 < p � 1.
The case p = 1, as in Bertozzi et al. (1999), gives the sharpest restriction and we
obtain Ḡ(h) = − ln(h).

The second term in integral (4.11), describing the hydrostatic pressure effects is
negative for 0 <h< 1

ε

∫
cosβ

3
{h3hx}xḠ

′ dx = −ε
cos β

3

∫
Ḡ′′h3h2

x dx. (4.12)
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Figure 2. Graphs of the left- and right-hand sides of inequality (4.15) for ε = 0.01, µ= 1,
h+ = 0.01, β = π/2. (a) The graph (q = −0.02) shows that for this q , there are no admissible
h−. (b) The graph (q = −0.004) shows that for this q , the region of admissible h− is given by
h+ � h− � 0.58.

Thus, from (4.11) it follows that

−s[Ḡ(h)] + [F ] � 0. (4.13)

The jump in the entropy can be written as

[Ḡ] = − ln(h+) + ln(h−),

and the jump in the flux is

[F ] = F (h+) − F (h−),

where (see (4.3) and (4.10))

F (h) = − 1
2
h2 sin β −6µq

[
2

3(1 − h)3
− 1

2(1−h)2

]
+ ε

{
−6µC1

[
2

3(1 − h)3
− 1

2(1−h)2

]}

+ ε
µ sin β

4

{
32

3(1 − h)3
− 32

(1 − h)2
+

23

1 − h
− 23 ln(1 − h) − h(5h + 28)

2

}

+6εµ2q

{
8

3(1 − h)6
− 14

5(1 − h)5
− 1

(1 − h)4
+

1

3(1 − h)3
+

1

2(1 − h)2

}
,

and C1 is defined by

C1 = 1
3
h3

− sin β +
µqh2

−(3 + h−)

(1 − h−)3
. (4.14)

We obtain the final inequality for the bounds for admissible capillary shocks

s �
F (h+) − F (h−)

ln(h−) − ln(h+)
. (4.15)

Figure 2 shows the left- and right-hand sides of the inequality (4.15). For prescribed
parameters of the system, and for given h+, there are maximum and minimum values
of h− for which travelling waves may exist. If we fix ε, µ, β and h+ and increase q from
−0.02 (figure 2a) to −0.004 (figure 2b) then the region of admissible h− increases from
zero to the range h+ = 0.01 � h− � 0.58. The changes in the range of admissible h−
can also be caused by the variation of other parameters (e.g. µ, β), as can be seen
from (4.15).

Figure 3 shows in more detail plots of the regions of admissible values of h− for
different values of q . Clearly, a decrease of q leads to the decrease of the admissible
region. Therefore, our results predict that these solutions may be more easily observed
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Figure 3. Bounds on h+, h− for which weak travelling-wave solutions are permissible, for
constant gas volumetric flow rate q = 0.1, 0, −0.001, −0.004, −0.009. Weak travelling-wave
solutions are not permitted outside of these ranges (Rel = 0 here).

in the system characterized by a smaller absolute value of q , for q < 0. In addition,
for q > 0 (corresponding to cocurrent downstream flow) we observe that the region
of admissible travelling-wave solutions is even larger.

4.2. Flow driven by constant pressure drop

Next, we consider the flow driven by constant pressure drop. Here, instead of (4.2),
we obtain the following equation

hτ + A1(h, P )hξ + ε[SC(h)hξξξ + A2(h, P ) + RelI (h, P ) + P (h)hξ ]ξ = 0, (4.16)

where

A1(h, P ) = h2 sin β − h(h + 1)P

2(1 − h)4
∫ 1

0
dξ/(1 − h)3

, (4.17)

C(h) = 1
3
h3, P (h) = − 1

3
h3 cos β,

A2(h, P ) = − µh3P

4(1 − h)4
∫ 1

0
dξ/(1 − h)3

− µh4

4(1 − h)
sin β

+
µh2(h + 3)

(1 − h)3


γ − h2(h + 3)

12
sin β − hP

4(1 − h)2
∫ L

0

dξ/(1 − h)3


,

I (h, p0ξ ) = Il + Ig,
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with

Il =
h4(7h + 25)

240
p0ξτ +

h5hξ

15


2h sin2 β +

56 + 49h − 41h2

56(1 − h)4
∫ L

0

dξ/(1 − h)3
P sin β

− (10h2 + 7h + 77)

224(1 − h)7


 P∫ L

0

dξ/(1 − h)3




2
 , (4.18)

Ig =
h2(27h − 10)

840(1 − h)3
hξρ

µ2


 P∫ L

0

dξ/(1 − h)3




2

, (4.19)

where

γ = − P∫ L

0

dξ/(1 − h)3

∫ ξ

0

h(h + 1)hξ̂

2(1 − h)4
dξ̂ . (4.20)

The integral term depends on the unknown interfacial height h. Therefore, we cannot
perform an analysis similar to the case of constant gas volumetric flow rate. Instead,
we resort to numerical simulations.

5. Numerical simulation
In this section we first consider the interfacial dynamics of the flow driven by a

constant gas volumetric flow rate, and then analyse the influence of the inertia on the
solution profile. Finally, we discuss the interfacial dynamics in the flow driven by a
constant pressure drop. We note that for all of the presented results, the interfacial
slopes hξ = O(1); therefore, the lubrication approximation remains valid for all the
results shown.

5.1. Constant gas volumetric flow rate without inertial effects

The numerical simulations are performed in a fixed (laboratory) frame. All cases use
Rel = 0, q = −0.004, h+ = 0.1, ρ = µ = 1, S = 3, β = π/2; the same qualitative dynamics
emerge for all h+ that are in the admissible (q-dependent) range presented in figure 3.
The length of the domain is typically fixed to the value of 60, although some cases
require the extended domain of length 200. For better visual presentation, we typically
show in the figures the [0 : 50] part of the domain. In each case, we consider a range
of left-hand states h− for which the dynamics of the governing PDE, (4.2), has a
certain characteristic behaviour. These cases are analogous to those investigated by
Bertozzi et al. (1999) for a model describing the interfacial dynamics of a single fluid
phase driven by a thermal gradient with counteracting gravitational force. We note
that the values h1, h2 and hUC discussed below all depend upon the particular choice
of system parameters and the right-hand state h+.

Case 1: h+ < h− < h1: unique weak Lax shock

Given h+, there is a value h1 such that for all h+ < h− < h1, the solution of the
PDE, (4.2), evolves to a unique capillary shock profile connecting the states h− and
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Figure 4. (Case 1) Interfacial profile with unique Lax shock for q= −0.004, ε = 0.01, β = π/2,
ρ = µ= 1, S = 3, h− = 0.3, h+ = 0.1. Solution at later times (t > 150) settles down to the steady
Lax shock. Here we use (a) the initial condition (5.1), and (b) the initial condition (5.2).
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Figure 5. (Case 2) (a) Interfacial profiles resulting in steady Lax shock for h− = 0.34 and
other parameters as in figure 4 using the initial condition (5.1). (b) Double shock wave profile
at different times for the same parameters as in (a) using the initial condition (5.2). Note that
this double shock structure is no longer steady since the capillary ridge broadens in width.

h+. To check this claim, we consider two initial profiles

h0(ξ ) = [tanh(−ξ + 20) + 1]
h− − h+

2
+ h+, (5.1)

and

h0(ξ ) =

{
1
2
(h+ − h−) tanh(ξ − 16) + 1

2
(h+ + h−) if ξ < 19,

− 1
2
(h+ − h−) tanh(ξ − 22) + 1

2
(h+ + h−) if ξ > 19,

(5.2)

connecting the states h− and h+. Figure 4 shows that the solutions settle down to
the unique steady travelling-wave solution, independent of the initial condition. We
note that figure 4(b) still shows the transient part of the evolution; for long times, the
height of the Lax shock in figure 4(b) is the same as shown in figure 4(a).

Case 2: h1 < h− < h2: multiple Lax shocks

For h− in the range h1 <h− < h2, there are multiple weak shock profiles connecting
the same two left-hand (h−) and right-hand (h+) states. Figure 5 shows several
solutions connecting h+ and h− = 0.34. Depending on whether the initial conditions
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Figure 6. (a) (Case 3) Undercompressive double shock structure dynamics for h− = 0.4 and
other parameters as in figure 4, with the initial condition (5.1) (identical result is obtained if
(5.2) is used). (b) (Case 4) Interfacial profile for h− = 0.5 and other parameters as in figure 4
(note longer times and larger domain).

(5.1) or (5.2) are used, we obtain either the single Lax shock or double shock structure,
evolving into the undercompressive shock (leading shock) and Lax shock (trailing
shock). The trailing shock moves with a slower speed than the leading shock. Owing
to the difference in speeds of propagation, the capillary ridge broadens.

Case 3: h2 < h− < hUC: undercompressive double shock structure

For h− in this range, there are no single Lax shock profiles joining h− and h+.
All initial conditions converge to a solution with the same double shock struc-
ture. Figure 6(a) illustrates this behaviour for h− =0.4. The solution at the later
time is characterized by the presence of two shocks. The leading shock is the under-
compressive shock while the trailing shock is a classical Lax shock. We note that
these are not steady travelling-wave solutions, since the width of the capillary ridge
grows in time. This double shock wave structure persists for h− < hUC .

Case 4: h− > hUC: rarefaction-undercompressive shock

For h− > hUC , we obtain a two-wave structure in which the slower wave is a
rarefaction wave solution. Note that these simulations are performed in larger domain
in order to analyse the dynamics for longer times. Here, we use h− = 0.5 and the
initial condition

h0(ξ ) = [tanh(−ξ + 170) + 1]
h− − h+

2
+ h+,

(we shift the initial condition (5.1) so as to be able to follow the dynamics for longer
times). Figure 6(b) shows a combination of a rarefaction wave and an undercom-
pressive shock. Since the undercompressive shock moves with a speed s(hUC, h+),
which is greater than the speed f ′(hUC) of the right-hand side (leading edge) of the
rarefaction wave, the undercompressive shock separates from the rarefaction wave to
produce a separated rarefaction shock profile.

Figure 7 shows the dependence of the liquid flow rate (Ql) on h− as gas volumetric
flow rates are varied. For negative, but small q (e.g. q = −0.0001), Ql is positive for
all values of h−, and this regime is countercurrent. For sufficiently large absolute
values of negative q (e.g. q = −0.01), Ql is negative for all values of h−, and the
flow regime is cocurrent, but in the direction opposite to gravity. However, for the
intermediate values of q, Ql can be either positive or negative. The exact value of
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Figure 7. The dependence of the liquid flow rate, Ql on h− for fixed gas volumetric flow rate.
Note the change from countercurrent flow for q = −0.0001 to cocurrent upstream flow for
q = −0.01.

h− = hc
− where Ql changes sign depends on q , but it is typically close to the boundary

of the admissible region, as can be seen by comparison with figure 3. Note that this
particular regime (where Ql changes sign) can be characterized by the presence of an
inflection point in this liquid volumetric flow-rate curve. We note that in Tilley et al.
(1994), a laminar flooding criterion was proposed for spatially periodic solutions that
correspond to the values of h near this inflection point. Thus, we find consistency of
our results with the laminar flooding criterion of Tilley et al. (1994b). Our numerical
results imply that the existence of an inflection point is also the requirement for the
formation of a double shock structure. We expect that the liquid flow reversal, and
related formation of double shock structures, are related to the onset of flooding
(Dukler & Smith 1979).

Figure 8 summarizes all our numerical simulations presented so far. In this figure,
for particular values of q = −0.004, S =3, ε = 0.01, µ = ρ = 1, β = π/2, we plot the
regions where the four cases considered above appear. Note that numerically found
values of h1, h2 and hUC for case h+ = 0.1 are different from the corresponding
values of h1, h2 and hUC for h+ = 0.2 and h+ = 0.3. We observe that an increase of
h+ leads to a decrease of the size of regions where we obtain unique Lax shock,
multiple Lax shocks, double shock structure, or a combination of rarefaction wave
and undercompressive shock.

5.2. Constant gas volumetric flow rate including inertial effects

We now consider the role of the inertia of the denser layer on the interfacial dynamics.
Figure 9 shows the profiles in the countercurrent flows with and without inertial effects.
In this case of countercurrent flow, the presence of fluid inertia influences neither the
interfacial profiles, nor the speed of propagation. Similar results were found in other
countercurrent-flow cases. In the case of cocurrent downstream flow, however, we
observe that inertia does influence the transient behaviour of the interfacial profile.
Still, the final state is insensitive to the presence of inertia. Figure 10 shows the
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Figure 8. Regions for admissible travelling shock solutions for q = −0.004 and other
parameters as in figure 4. �, h1; �, h2; �, combination of rarefaction and undercompressive
waves. The solid line is copied from figure 3.
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Figure 9. (a) Interfacial profiles for constant gas volumetric flow rate case without inertia
(Rel = 0) and with inertia (Rel = 20) at time t = 750 for q = −0.004, h− = 0.4 and other
parameters as in figure 4. (b) Change of interfacial height in time without and with inertia.
The overlap of the lines in both figures shows that the influence of inertia is negligible.

interfacial proiles for this case, with positive gas volumetric flow rate (q = 0.0001)
when inertial effects are included (Rel = 20, solid line), or not (Rel = 0, dashed line).
We see that the position of the classical Lax shock at the time t = 500 is the same
in these two cases, although the height of the transient profile changes more slowly
in the presence of liquid inertia. We have also verified numerically that the fluid
inertia does not change the boundaries of the shock travelling-wave regions, shown
in figure 8.

5.3. Flow driven by constant pressure drop

Next, we consider the case of constant pressure drop and allow the gas volumetric
flow rate to vary in time. (Note that incompressibility of both fluids requires that the
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Figure 10. (a) Interfacial profiles for constant gas volumetric flow rate case without inertia
(Rel = 0, dashed line) and with inertia (Rel = 20, solid line) at time t =500 using q = 0.0001
(cocurrent flow), h− = 0.4 and other parameters as in figure 4. (b) Change of the maximum of
interfacial height in time. At time t = 500, the profiles in both cases (without and with inertia)
coincide.
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Figure 11. (Case 2) Profiles of travelling double-shock wave solution for constant pressure
drop case (P is chosen so it corresponds to q = −0.004 at time t = 0) without inertia using
system parameters as in figure 4 and h− = 0.36.

total flow rate remains constant.) We describe the dynamics in the context of the fixed
gas volumetric flow rate from § 5.1. Since some of the results are very similar to those
from § 5.1, we present in this section only the figures which illustrate the differences
between these two cases.

Case 1. Interfacial profiles in this regime appear to be identical to the fixed gas
volumetric flow rate.

Case 2. The shape of the interfacial patterns (figure 11) resembles the qualitative
features of those found in the fixed gas volumetric flow rate. For initial conditions
given in (5.1), the transients eventually evolve to the steady travelling Lax shock solu-
tion. For initial condition given in (5.2), the double-shock structure results. However,
the maximum value increases as the structure evolves, in contrast to the constant gas
volumetric flow rate case shown in figure 5(b). This growth of the maximum value
is shown in figure 12, which compares the maximum height of the interface for the
constant pressure drop case (solid line) and for the constant gas volumetric flow rate
(dashed line).
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Figure 12. Height of the undercompressive shock versus time for constant pressure drop
(solid) and constant gas volumetric flow rate (dashed) using h− = 0.36, the initial condition
(5.2) and other parameters as in figure 4. The corresponding interfacial profile for the constant
pressure drop case is shown in figure 14 and for the constant gas volumetric flow rate in
figure 9. After initial transients, we see steady increase of the height of the shock in the case
of the flow driven by constant pressure drop.
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Figure 13. (a) (Case 3) Undercompressive double-shock structure dynamics for constant
pressure drop case (P is chosen so it corresponds to q = −0.004 at time t = 0) using h− = 0.4
and other parameters as in figure 4 (compare figure 6a). (b) (Case 4) Interfacial profiles for
h− = 0.5 and other parameters as in figure 4. (compare figure 6b; note longer times and larger
domain).

Case 3. Figure 13(a) shows the double-shock structure which is similar to that found
in the fixed gas volumetric flow rate. Similarly to Case 2, we find that the maximum
height increases, in contrast to the constant gas flow-rate case (see figure 6a).

Case 4. Figure 13(b) depicts the interfacial profiles evolving into the combination
of rarefaction and undercompressive waves (h− = 0.5). Again, the transient behaviour
differs from the fixed gas volumetric flow-rate case. The rarefaction wave appears to
evolve as earlier (see figure 6b). However, the double shock evolves with the forward
peak growing in time while the maximum located near the Lax shock remains close
to h = 0.5.
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Figure 14. Interfacial dynamics of travelling shock-wave solution for constant pressure drop
case (initially corresponding to q = −0.004) without inertia (Rel = 0) and with inertia (Rel = 20),
h− = 0.36, t = 750 and other parameters as in figure 4. Clearly, the influence of inertia is
negligible.

5.4. Constant pressure drop with inertia

In all of the cases we have investigated, no quantitative changes were found as a result
of inertial effects. An example of this is shown in figure 14, where interfacial profiles
for countercurrent constant pressure flow with and without inertia are compared.
Notice that the profiles appear to be unchanged, up to the resolution of the plot.

6. Conclusions
In this work, we have investigated the nonlinear evolution of the interface between

two incompressible immiscible fluids in an inclined channel. Our study is motivated by
air–water systems, and therefore we consider the fluids which have disparate dynamic
viscosities and densities. Through a lubrication approximation, we derive a system
of nonlinear evolution equations that govern the interfacial motion between the two
fluids and the leading-order pressure contribution. The lubrication approach includes
the inertial effects of both the liquid and gas layers.

We consider two different forcing scenarios. The first, where the gas volumetric
flow rate is fixed, results in a standard lubrication approximation, and the interfacial
dynamics depends only on local variations of the interfacial shape. We find that
the undercompressive shock paradigm found in Marangoni-driven fluid layers is
qualitatively applicable in the countercurrent flow regime in our case. Small differences
in the upstream and downstream interfacial height result in the formation of
Lax shocks. Larger differences result in bistability among Lax shocks and unsteady
double-shock structures. This bistability is lost when this differential is increased
(double-shock structures are stable and Lax shocks are unstable). Finally, a solution
forms which combines the double shock and a rarefaction wave.

The second scenario, where the pressure difference over the channel length is fixed,
results in a non-local dependence of the interfacial dynamics on the interfacial shape.
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Although the regimes outlined above persist in the flow driven by constant pressure
drop, the interfacial heights change in time as the shocks propagate downstream, and,
in particular, we observe the growth of the undercompressive shock height. Therefore,
the travelling-wave solutions found in the constant gas volumetric flow rate case do
not exist for the flow driven by constant pressure drop. This is the main difference
between these two scenarios.

Although our theory and numerical simulation cannot quantify the dynamics
completely in the case of constant pressure drop, a theory that allows for inertial
effects that are comparable to surface-tension effects may be able to capture the final
state of this transient behaviour. This transient may be related to a flooding scenario,
since the liquid and gas volumetric flow rates in this case are the same as the dynamic
flooding criterion found in Tilley et al. (1994b) for the spatially periodic system.

Finally, we reiterate that we have only considered one particular set of fluids and a
simple geometry (vertical channel) in some detail, in order to focus on how the flow
constraints (either local or non-local) can affect the dynamics of the flow. The applied
constraints and boundary conditions on the interfacial height that we have used in
this study are approximations of what we anticipate to be true in experiment. One
clear outcome of this study is that a proper mathematical description of the correct
experimental conditions is vital in order to understand the physical mechanisms for
onset of flooding.

B. S. T. & T.M. S. are supported by NSF under grant number DMS-9971383. Partial
support by grant number NSF INT-0122911 is also acknowledged. T.M. S. thanks
Olin College for their support.

Appendix A. Derivation of the evolution equation
At O(ε), the x-momentum and continuity equations (2.6)–(2.7) yield

Rel

(
u

(1)
0τ + u

(1)
0 u

(1)
0ξ + u

(1)
0ζ w

(1)
0

)
= −p

(1)
1ξ + u

(1)
1ζ ζ , (A 1)

Relρ
(
u

(2)
0 u

(2)
0ξ + u

(2)
0ζ w

(2)
0

)
= −p

(2)
1ξ + µu

(2)
1ζ ζ , (A 2)
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(1)
1ξ + w

(1)
1ζ = 0, (A 3)

u
(2)
1ξ + w

(2)
1ζ = 0, (A 4)
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(1)
1 = 0 (ζ = 0), (A 5)

u
(2)
1 = 0 (ζ = 1), (A 6)

w
(1)
1 = 0 (ζ = 0), (A 7)

w
(2)
1 = 0 (ζ = 1), (A 8)

µu
(2)
1ζ − u

(1)
1ζ = 0 (ζ = h(ξ, τ )), (A 9)

w
(2)
1 − hξu

(2)
1 − w

(1)
0 + hξu

(1)
0 = 0 (ζ = h(ξ, τ )). (A 10)

Using equations (A 1)–(A 4) and the boundary and interfacial conditions (A 5)–(A 9),
similar to the analysis at the previous order, we arrive at the solution for u

(i)
1

u
(1)
1 = P1ξ

ζ 2

2
+ φζ + F (1)(ξ, ζ, τ ), (A 11)

u
(2)
1 =

P1ξ + α

2µ
(ζ − 1)2 + ψ(ζ − 1) + F (2)(ξ, ζ, τ ), (A 12)
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where

φ = µF
(2)
ζ (ξ, h, τ ) − F

(1)
ζ (ξ, h, τ ) − µ

h − 1
F (2)(ξ, h, τ )

+
µh

2(h − 1)
{h sin β − p0ξ } + α
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2
− P1ξ

h + 1

2
, (A 13)

ψ =
F (2)(ξ, h, τ )

1 − h
+

(P1ξ + α)(1 − h)

2µ
+

h(h sin β − p0ξ )

2(h − 1)
, (A 14)

α = Shξξξ − hξ cos β. (A 15)

We refer to Appendix B for the definition of the inertial terms F (i). The continuity of
normal velocity (2.10) then gives the equation for the pressure gradient

[p0ξ (h − 1)3 + ε{(h − 1)3(P1ξ + α) + 12µθ}]ξ = ε
6µh(h + 1)

(1 − h)
hξp0ξ

where

θ =
h2(h + 3)

12
sin β +

h(h − 1)

4
p0ξ − 17

3360
Rel

ρ

µ3
hξp

2
0ξ .

Appendix B. Derivation of the inertial terms F (i)(ξ, ζ, τ )

To find the inertial term F (2)(ξ, ζ, τ ) in (A 11) and (A 12) we must solve the problem:

F
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ζ ζ (ξ, ζ, τ ) = Rel
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, (B 1)

F (2)(ξ, 1, τ ) = 0, (B 2)

F
(2)
ζ (ξ, 1, τ ) = 0. (B 3)

After integrating (B 1) and, using the boundary conditions (B 2) and (B 3), we obtain:
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Similarly for F (1)(ξ, ζ, τ ) we have:
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with the following boundary conditions:

F (1)(ξ, 0, τ ) = 0, (B 9)

F
(1)
ζ (ξ, 0, τ ) = 0. (B 10)

After integrating (B 8) and applying the boundary conditions (B 9) and (B 10), we
obtain:

F (1)(ξ, ζ, τ ) = a
(1)
1 ζ 6 + a

(1)
2 ζ 5 + a

(1)
3 ζ 4 + a

(1)
4 ζ 3, (B 11)
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where
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